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1. INTRODUCTION

In a previous report (Reference 1), the author proposed
the use of sequential (successive) differences as an aid in
identifying outlier data points and in selecting the appropriate
order polynomial for smoothing of 3-D data on torpedo and target
paths. In this report, the concept of successive differences
is explored and developed with the specific intent of making it
suitable for inclusion in a computer program for smoothing
3-D data.

The nature of the report is in the form of a working
paper rather than a polished formal report. Some of the dis-
cussions presented are rather lengthy and points of interest
are, perhaps, belabored and/or repeated unnecessarily. The
reader's indulgence is invited and some skimming is expected.
Nevertheless the general picture appears clear and the possi-
bility of using the model for identification of outliers

reasonable.




2. DEVELOPMENT OF MODEL

A. General Considerations

For the purposes of this analysis, it will be assumed

that an observed datum X, can be expressed in the form

X, = x(t.) =P (t.) + n, + d.
i i % =i i i

where P(t) is a polynomial in time ¢t, n, is a measurement
error which will be called "noise," and di is a perturbation
or disturbance which, if present with sufficient amplitude,
will cause X, to be a "wild" datum or outlier.

It will be assumed that each component (x,y,2) of a
torpedo (T) or target (submarine, S) path can be represented
as a polynomial of some low degree k in time t. (It is
suggested that the restriction k < 4 be incorporated in the
smoothing algorithm.) Thus

Px(t) = a, + a,t + a,t° + - +

0
The noise component, n. . is assumed to be a realization

of a random variable Ni which is Normally distributed with
mean 0 and common variance 62 (Ni ~ N(O,cz)) and it is also

assumed that noise components Ni and Nj at times ti and

tj are independent.



Finally, it will be assumed that a disturbance di
should have fairly rare occurrence. Evidence of the existence
of a non-zero value of di can be obtained from examination
of successive differences which, when sufficiently high order
differences are considered, are functions of the (ni + di)'s
and not of the P(ti)'s. Crossing of a threshold value for
successive differences, which is seldom crossed when no di's
are present, can then be used as an indication of the presence
of a disturbance di and hence of an outlier point. Note
that, not only can noise only cause an occasional crossing
depending on the threshold selected, but the presence of a
disturbance may not cause a threshold crossing depending on
ifs magnitude and its interaction with noise. This will be

elaborated as the development of the model progresses.

B. Successive Differences

A definition of successive or sequential differences
suitable for our purposes is presented in the accompanying
table (Table 1) and the notation which follows. Since the
3-D data to be smoothed involves data points equally spaced
in time, this has been incorporated in the model. Further,
the initial time for any data segment can be arbitrarily set
to zero for model development hence t0 = 0. Also, selection

of the common time interval as the unit of time yields

t = ¢, + 1.
i

Bis B
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The selection of the secondary subscript i 1in the
ordered differences is somewhat arbitrary. As will be noted when
disturbances are introduced, it appears desirable for computa-
tional convenience to identify the even ordered differences
(D2i and D4i) with the observation Xy for each i. For
example, a large isolated disturbance di hF) o} Xy will produce

large perturbations in D2i and D hence the latter can

4i
be used to identify X, as an 'outlier.' For the odd ordered

differences (D1i and D the situation is not as clear.

3i)

For example, if a large perturbation is observed in D3i it
is not clearly evident whether X; Oor Xx,;_; should be con-
sidered as the 'outlier.' At this stage in the development,
it would appear that the even ordered successive differences

should be the primary identifiers of 'outliers.'

C. The Polynomial Component

To illustrate the contribution of the polynomial component
to successive differences, three cases (linear, quadratic, and
cubic) polynomials are presented in Tables 2.1, 2.2 and 2.3.

It can readily be seen that there is a contribution of a
polynomial of degree k to Dji for j < k but that for j > k
the number Dji represents noise only unless a disturbance

is present. Thus detection of a disturbance, and hence identi-

fication of an outlier, becomes simpler if a sufficiently high

order difference can be used and the polynomial component

eliminated.




TABLE 2.1 . SUCCESSIVE DIFFERENCES

Linear Case: X, = X(ti) = a; + alti + n,
i Py Pai D3
0
Riy = @g ¥ gy
| Pa1, = Hgy
Big =&y ¥ Wyo B *
Ry Ty Bz = Tap
Byg = &g ®Hgg Rog =
33y * oy Byg = Dipg
Dig = Sy % Hgy Dgg =
4al+n4 024 =n24
Pig, = 81 * Hys Pgg =
oy, W Ny D5 = Nps
Pig = 81 * Nyp
Gal + N




TABLE 2.2

. B B 2
Quadratic Case: xi = x(ti) = a, + alti + a2ti - ni
- = - 2
tO = 0, ti+l = ti + 1, n. N(0,0%)
x5 o Bisg Bas | Pug
a, + n,
a; + a, + n
a, + a; B a, + n, 2a2 - n21
al + 3a2 + n12 n32
a0 + Zal + 4a2 + n2 2a2 + n22 n42
a; + Saj; +ng, Ham
a0 + 3al B 9a2 + n3 2a2 + n23 n43
S e o XY
a0 + 4al - 16a2 + n, 2a2 + n24 N4q
Ay Hel Seing g e
ao + Sal - 25a2 + n5 2a2 + n25
al - lla2 - n16
a, + 6al + 36a2 + n6
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The question of how high the order of the difference must
be to eliminate the polynomial component is not clear-cut. As
a matter of fact, the polynomial component does not have to be
eliminated entirely for a particular order of successive differ-
ences to be used to identify outliers. It is sufficient that
the contribution of the polynomial component Pji be small with
respect to the noise component Nji for D.. to be useful as

5[ 8
an indicator of a disturbance di in x..

3

(This is intimately related to the problem of fitting
polynomials to segments of a torpedo path. If (1) torpedo path
does not change too radically, (2) the length of the path segment
to be fitted is short enough, and (3) the data rate is high

enough, then low order polynomials can provide satisfactory

approximations to the path. 1In Reference 1, path segments of

21 and 11 points were explored briefly. Path segments consisting
of 7 points has been suggested but not examined as yet. 1In

many of these segments examined polynomials of order k < 3
produced acceptably small and apparently random residual errors
for 11 point segments.)

From Tables 1, 2.1-2.3 it can be seen that a successive
dif ference Dji of order j involves j+1 successive observations
X For j £ 4, as proposed for screening for outliers, at most
five data points are involved. These can be fitted reasonably
well by polynomials of order k < 3. Supporting evidence for
this is available in the successive differences for the 3-D

data on the torpedo run examined in this study. Discussion of

the analysis justifying this contention will be presented in

a later section.




An alternative has been suggested. It incorporates
control information (information obtained by alternate means on
the command and control of a torpedo) to provide appropriate
values for the polynomial coefficients and to indicate appro-
priate polynomial order for fitting data. In the linear case
this information should be in the form of a specific value or
bound for a,. Since a; = V| cos 8, as illustrated in the

- >
accompanying sketch with V a velocity vector and |V| the

magnitude of 6, one possible value for =31 would be a; < (v .

A

<t

Sy

This will be shown to dominate the noise component N for

1i
3~-D data. Information from control data on 8 could be used

*
but would require (and hence the threshold Dl) to be

"
treated as a function of position on the torpedo path and
hence as a function of ti' For the purpose of preliminary
screening for outliers, it would appear preferable to concen-
trate on successive differences of sufficiently high order
that the polynomial component can be considered negligible.

*
With this constraint, a constant threshold Dj can be used

for all successive differences Dji of order 7.

10



D. The Noise Component

When the polynomial component Pji has been eliminated,
attention can be concentrated on the noise component nji of
the jth order successive differences. In engineering parlance,
the problem of identifying outliers can now be considered as
one of detecting a signal (a disturbance di) in the presence
of noise (nji). The thresholds D; can be expressed as specified
levels of Dji which are seldom exceeded by noise only and hence
which indicate the presence of a disturbance di. In order to
establish values for D;, a statistical analysis of the noise
component is required.

Recall the assumptions in Section 2.A that the noise
component n; is a realization of a random variable Ni with
N, o~ N(O,OZ) and that Ni and Nj are independent for i # j.
It can be established from the definitions of successive differ-

ences that the noise component Nji of Dji can be defined

in terms of the noise components n, of X, as follows:

i T M T i

P21 © %ad an T

Nay = 0440 = 3n. + 3n -1 " B9

Ny =050~ 4ni+l + 6n, - 4nl_l + 0,

e 4




Each of these noise components have mean 0 since the n.'s

313

are assumed to have mean 0.

The variance Vj of Nji can be expressed in terms of

2

the common variance o of the ni's using the independence

property of the

n,'s. These are presented below together
with some of the covariances C(nji’kkr) of interest later.
st . .

1 Order Noise Differences (Nli)
_ 2
Vl =1 2T
C(n n, .. ..) = -02

1i" 71,1+l

2nd Order Noise Differences (Nzi)
o 2
V2 = 60
C(n n ) = —402
217 72,1+l
2

Clngir My 540)

3rd Order Noise Differences (N3i)
= 2
V3 = 200
. 2
C(n3i, n3’i+l) Tt 120
C(n 602

3i’ P3, 342

4th Order Noise Differences (N

)

41
_ 2
V4 = 700
S 2
C(n4i, n4,i+l) — 560
C(n 2802

ai’ D4, i+2

12



Selected Covariances

C(nZi' n3i) = lOo2
C(nZi, n3,i+l) = -lOo2
C(nZi' n4i) = -2002
Clny, s n4,i) = =350
Cny 4,10 Pgy) = 350°

Since all the Nji's are normally distributed with mean 0,

it can be established that

P(IN..| > 3V/V.) = 0.997
Jji° = %)

If we set D; =3 /V; then, for applications in which the poly-
nomial contributions to Dji have been eliminated, there will
be, on the average, less than one time in 200 independent trials
in which the leiI will exceed D; due to noise alone. The

suggested thresholds for detection of disturbances are given

below.

Dj | 30 4.240 7.348¢ 13.4160 25 1.0
b ; : 2 :
The term Dj with j = 0 corresponds to Vo & @ (i@,

the variance of Ni and hence of Xs when no polynomial

is involved).

13




The suggested thresholds are worth some further exploration.
As an oversimplified case consider a situation in which no poly-

nomial contributions are involved, n, = 30 for some k, and

n, = 0 for i # k. The relationships of the Djk's to the
*
Dj's are shown in the following table.

3 0 il 2 3 4
Djk = njk 30 30 -60 -9¢ 18c
*
D, 30 | 4.240 7.35¢0 13.40 25.10
*
Inlkl/Dj i .707 .816 .671 < LT

Since lnzkl/D; is greater than the corresponding expression
for j =3 or j =4, it could be anticipated that the second
order differences (the D2i's) might be better detectors for dis-
turbances when the polynomial contribution is linear. This
will be demonstrated for an isolated disturbance in a later
section of this report.

The type of information to be seen in the special case of
an isolated noise element n, can be generalized. The co-

variances are useful for this purpose. Note that, comparing

the special case to the covariances,

14



Special Case Covariance

D = -60
2k 2
CiRyge Bgguy) = =40
B il o
D = =60
2k _ 2
C(nZi’ n3i) = +100
D3k = =9¢g
D2k = -60
2
_ c(n,., n,.) = =200
D4k = 180 21 41

This relationship can, perhaps, be made clearer by considering

the correlation coefficients. For example,
Cin,. n,.) _ 2
r(nzi, n4i) = 21, 41 200 = -0.976
a2y J (Ec S (T00%)

The other correlation coefficients of interest here are

r(nZi, n2,i+l) = %é = -0.667 ,
r(nzi, n3i) = VI;; = 0.913 ,
Elgga By syl = % = -0.6 .
r(ng; ny;) = l;;i = -0.935 ,
e r{ngir By 54) = =5 = 0.8

15



These can be interpreted as follows. In general, if n,. has

21
a large value, then n2,i+1 and n4i can be expected to have
fairly large values of the opposite sign and n a fairly

)

large value of the same sign. The importance of this in detect-
ing outliers is that the information provided by different
orders of differences at the same point and by differences of
the same order at adjacent points is primarily of a confirmation
nature rather than providing complementary information. This
can be interpreted to the more practical statement that, for

example, if a disturbance in X, which does not cause a cross-
*

ing of D4 by D4i,then it will usually not cause a threshold

crossing by D2i’ D3i’ D4,i-1 or D4,i+1' On the other hand,
*

if D4i exceeds D4 in magnitude, then one or more of these

other differences has a reasonable chance of crossing its pre-
scribed threshold.
As a consequence of the complementary nature of threshold

crossings and of the fact that D is less likely to be con-

4i

taminated by a polynomial component, it is suggested that the
testing for outliers be performed by testing only fourth order
differences (the D4i's) for crossing of the appropriate

*
threshold D4.

Before considering the disturbance component of X,
it would be of interest to consider the relative magnitudes

of polynomial and noise components of 3-D data. Of particular

*

interest here is the comparison of with D, since these

ol

16



are the vital components if the first order differences are to be
used for detecting outliers. Since a; = |¥] cos 8, it can be
seen that a; achieves its maximum magnitude when 6 = 0° or

6 = 180°. A plot of the path of the torpedo in the torpedo run
selected for examination in this study and the corresponding data
together with the first four orders of differences are presented
in Appendix A. It can be seen that 6 = 0° occurs in the
vicinity of t = 950 and 8 = 180° occurs in the vicinities

of t = 807, 853, and 917. An approximate value of |V| is
satisfactory for the present purposes and the value |V| = 95
will be used.

Establishment of a bound for the noise in the form with

P(INliI > 3oNl) £ 0.01 ,

2

with N, = 202, requires estimation of 02
¥

Reference 1, estimates of ¢ as low as 2 or 3 were obtained

, the noise wvariance. 1In

for selected segments of the torpedo run to be used here. It
will be assumed for this examination that ¢ = 4 and hence that
lof = 5.656 and hence 30 = 17.
o] Ny

Boundary for Dli can then be set in the form

Thus, only if Dlj were greater than + 112 or less than =112

would a disturbance be indicated. Using the formula

* >
Dj = |V] cos 8 + 30N1

1.7




when 6 1is given we have

- %
1
8 Lower threshold Upper threshold
0° 95 - 17 = 78 95 + 17 = 112
90° -17 + 17
180° -95 - 17 = =112 -95 + 17 = -78

It can be seen that detection of disturbances in the first order
differences unless 68 = 0° or 180° will not be reliable when

a general threshold of the form

is used.

Bl Tﬁéngisturbance Comgghent_.

The presence of a disturbance or perturbation in an obser-
vation X, can be represented as an additional component di
so that

X, = x(ti) = P(ti) + ni + di

There are several types of perturbations that could be considered.
One of these, an 'outlier' or isolated disturbance di that

occurs in only one observation X5 is the simplest. The effects

138



of such a disturbance is shown in Table 3.1 and the accompany-

ing sketch, Figure 3.1. In the sketch both d and the D;'s

are expressed in terms of the parameter ¢ (the standard deviation
of the noise component ni). The value d = 50 is used for

illustrative purposes. Also note that the ordinate is

=x.. = P.. - n.. = d.

[}
*3d 54 k! L1 ji

and hence represents only the disturbance component of in'
There are several features of the successive differences

that should be noted when an isolated perturbation occurs. First,

consider an observation Xy (in our example X, = 4) consisting
of an isolated disturbance d = ko without any noise (nji = 0
for all j and i) and with polynomial component P(ti)==a0-+alti.

*
The values of k for which the thresholds (Dj's) are achieved

are shown below.

j 2 3 4
Dj4 2ko 3ko 6ka
*
Dj 7.350 13.40 25..1g
Critical k 3.675 4.467 4.183

In the absence of the noise and polynomial components,
the second order difference D2i will provide a threshold cross-

ing for a smaller isolated disturbance (d > 3.675¢) than either

19



the third order difference (4 > 4.4760) or the fourth order

difference (d > 4.183c) and D is slightly better than D

4i
If assurances could be given that the polynomial component was

3.

no higher than the first degree, then the second order differ-
ences (the D2i's) would appear to provide the most sensitive
location to test for isolated disturbances. If polynomial
components of the second or third degrees are possible then
the fourth order differences (the D4i's) appear to be prefer-
able for testing.

Next, consider the pattern or signature produced in the
ordered differences by an isolated disturbance at tr' Both

D and D will contain their maximum contributions from

21 41
the disturbance at D2r and D4r (of opposite signs) and both

will have substantial but smaller contributions of opposite

signs at the adjacent points (D2 and D and

= 2, r+l

D4,r-l 4,r+l)' The third order differences (the D3i s)

will have contributions of equal magnitudes but opposite signs

and D

at adjacent positions (D and D ) and smaller contri-

8 M5 3, r+l

butions at the next positions. Incorporation of their signatures,
although clearly recognizable, in the graph (see Fig. 3.1)
would be difficult to incorporate in a program for automatic
computer filtering of outliers.

The last item for discussion of isolated disturbances
pertains to the addition of noise and disturbance components.

Consider, now a disturbance d = 5¢ in X, (x4 in Table 3.1)

20



and its effect on Dyr in the presence of noise. A positive
*
value of n, . will enhance crossing the threshold D, so

attention can be directed to the effects of negative values

for Dy T
o)
N44
n . < -(300 - 25.10) = -4.99|———| = -.5860
/70 o R4
*
then D4r will not cross the upper threshold D4 = 25.1g0. For

this situation the probability of a threshold crossing is

*
P( > D4) = ,721. In this event n and n will,

N4n

in general, be positive since

4,r-1 4,r+1

S = =0.8 (Section C)

Bage By gl = B Mgus By §49)

and hence neither D4,r—l nor D4,r+l can be expected to cross

*
the lower threshold Dy = - 25.10. Also, as a consequence of
r(nzi, n4i) = -0.976, a negative value for ng, can be expected

to be accompanied by a positive value for n,. and hence D2r

*
will not cross the lower threshold 02 = =7.350. Further,

since r(n,., n2,i+l) = -0.667, neither D2,r—l nor D2,r+l
*

can be expected to cross the upper threshold 02 = +7.350.

Similarly the correlations r( ) = -0.935 and

Ay Ran

r(n3i, n3,i+l) = -0.6 make it unlikely that either D3, or

*
DB,r+l will cross the lower threshold D3 = =-13.40 or the

*

upper threshold D3 = +13.409, respectively.




Linear Case:

SUCCESSIVE DIFFERENCES

TABLE 3.1

Isolated Disturbance

d

X Bss: B2 3i Dyy

ao no
T

a0 S = By o
dy F D ",

a, 2al n, - N,y Ny, + d
ag, * By a gy o

a, 3al I, N, + d Nyq = 4d
a,; + nq,4 d Ny = 3d

a, 4al n, + d Doy = 24 Ny, + 6d
a; + nqc d Dag + 34

a, Sal ng N,y + d Dys = 4d
b s nig - d

ag = bag & g N2 ngeg + d
al + nl7 n37

a0 7al n, n,-
ap ¥ Mg

a, 8al ng
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The proposed use of only one order of successive differ-
ence (namely, D4i) to test for outliers appears reasocnable for

isolated disturbances. If D4r exceeds 1its threshold then this

will will usually be accompanied by D2,r and D3,r exceeding
their thresholds in the opposite direction.

Attention can now be directed to disturbances other than
isolated ones. Consider, next, a situation involving distur-
bances di and dk in two observations. For simplicity, it
will be assumed that they have the same magnitude, d, but can differ
in sign and/or location. The situation with two adjacent dis-
turbances of the same sign is presented in Table 3.2 and Figure
3.2. Note that the magnitudes of the contributions of the
disturbances to D and D (D and D for equal

44 45 4r 4, r+l

disturbances in X and Xr+l) is substantially reduced from
that in case of an isolated disturbance as is the contributions
to the next adjacent observations. It is evident that large
adjacent disturbances of the same sign will be less likely to
cause threshold crossings. Note that a large noise component
in one observation (n4r, for example) will, in general, be
accompanied by a large noise component of the opposite sign
(r(n4i, n4,i+l) = =0.8) in the other observation and hence
enhance the probability of a threshold crossing by one of the

differences D4r or D4,r+l' In general, two adjacent large

values of the same sign in D2i or D4i is a signature
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Linear Case:

TABLE 3.2

SUCCESSIVE DIFFERENCES

Adjacent Equal Disturbances

X5 B Boi i Dy

a, ng,
G Tl

*5 Ik = 221
By ¥ g Ry

a, 2al n, N,y ng, + d
a; + ny4 Nag + d

a, 3al n, Nyg o Ngy = 3d
a; =~ ny,+ Doy = 2d

a, 4al n, d Doy ~ Ny + 24
a1 T P1s P35

a, Sal ng d Y o + 2d
a; *+ nyg - N + 2d

a, 6al ng Noe + Nye = 3d
&) “iay ey~ @

a, 7al n., n,. N, + d
a; + njg Nag

aj 8al ng N,e
2y * P9

a; 9al ng
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of adjacent disturbances of the same sign. (The possibility
of using reduced thresholds for this situation has not been
explored.) The magnitudes of the D3i's are also smaller than
in the single disturbance situation and are separated by an
observation (D5g) involving noise only.

Next, consider adjacent disturbances of equal magnitudes
but opposite signs. This situation is presented in Table 3.3
and Figure 3.3. The additive, or magnification, effect of the
opposing signs should make even moderate magnitudes of the
disturbances readily detectable. The pattern or signature
should be clearly evident. It is suspected, however, that the
occurrence of this situation in real-life data would be
extremely rare in comparison to the previous situation.

The situation in which two disturbances of similar
magnitude and sign separated by one unperturbed data point is
presented in Table 3.4 and Figure 3.4. From the graph it can
be seen that this situation looks much like a situation with
a single isolated disturbance of somewhat greater magnitude
and opposite sign (Fig. 3.1). This brings the danger that
the observation Xg (between the two observations with dis-
turbances) could be erroneously labeled as an outlier and hence
removed and treated as a missiﬁg point. In the next section
missing points and their replacement by the average of the

observations on each side of the missing point will be discussed.
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Linear Case:

TABLE 3.3

SUCCESSIVE DIFFERENCES

Adjacent

Opposed Equal Disturbances

i Pi1 Do 1 Dy

a, n,
a; +ng,

L TR T | "21
S D42

a, Zal n, N,y Ny, + d
a; + 4 n33 + d

a, 3al n, n,g + d gy = 5d
a; +ng, + d Ny = 44

a, 4al n, + d Nog = 3d Dy, *+ 10d
a; + ny¢ - 24 nag + 6d

a, 5al ng - d Ny + 3d Dyc = 104
a; *+np+ d S 44

a, 6al ng Nye = d Dy *+ 5d
gy B By & 2

a, 7al n, n,o Ry = d
Sg  Tig 38

a, 8al ng Nyg
Sq, & Halg

a, 9al ng
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Linear Case:

SUCCESSIVE DIFFERENCES

TABLE 3.4

Two Disturbances Separated by One Point

ol il 1i 2% 31 41

0 ag * n,
- A T

L) Hg * 8y By bog
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2 a; + 2a n, N22 N42 + d
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5 a, + B5a Ne N25 + 24 N45 - 8d
gy, ¥ i Hgeg = e

6 ag + 6al ne + d Nyg - 2d Ny * 7d
& Nigen = 2

7 ag + 7al n, N27 + d N48 - 44
a; + ng N38 =1 d
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This treatment would introduce the disturbance d 1in the new
value for Xe and hence to three adjacent equal disturbances.
The latter situations presented in Table 3.5 and Figure 3.5.
Note, first, that removal of an observation and replacement of
the missing point should be followed by recalculation of the
ordered differences affected and, second, that the magnitudes
of the contributions of the disturbances to the ordered differ-
ences are substantially reduced from the contributions in either
the isolated disturbance situation or the separated distur-
bances situation. In this modified situation the reduced
thresholds presented in the next section will improve the
capability of indicating the presence of the two separated

disturbances. A threshold crossing by any of the D,.'s with

41
i=3,4, 5, 6 1in the modified results should serve as an
indicator that disturbances may be present in X, and Xe

rather than in Xg -

In addition to the occurrence of three adjacent and
equal disturbances in the treatment of two such disturbances
by replacing missing points, it is possible that this situation
can occur due to the persistence of the perturbation causing
the disturbances. The lower disturbance contributions to the
ordered differences could readily fail to produce a threshold

crossing as could the situation with two adjacent equal dis-

turbances whereas the situation with an isolated disturbance
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TABLE 3.5

SUCCESSIVE DIFFERENCES

Linear Case: Three Adjacent Equal Disturbances

= Xi i Do Dz Pyi
0 a, + ng
&g = Ty
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of the same magnitude would yield a threshold crossing. These
situations with more than one adjacent, equal disturbances may
require greater consideration of the signatures identifying
them. (See Figures 3.2 and 3.5.) Such modifications are not
examined further in this report.

For the present, it will be assumed that successive
differences will be incorporated in a data smoothing algorithm
for the two purposes discussed in the introduction (Section I),
namely, identifying outliers and indicating appropriate order
polynomials for fitting the data. There are two ways that
sequential differences can be used in identifying outliers.

One is as a preliminary screening to remove some of the more
obvious outliers to be followed by a reexamination for outliers
in the curve fitting portion of the data smoothing algorithm

as presently incorporated in the general track smoothing program
MASM3DRJ. The other approach would require sequential differ-
ences to provide the only means of identifying outliers. As
indicated by the comparatively simple situations considered
here, this would require considerably more modal development
and become a considerably large portion of a data smoothing
program. For the purposes of this report, the first approach
will be considered appropriate.

A situation with two equal disturbances separated by
two unperturbed observations is presented in Table 3.6 and
Figure 3.6. It should be observed that when disturbances are
separated by as few as two points they can be considered essen-

tially as isolated disturbances. (See Table 3.1 and Figure 3.1l.)
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Linear Case:

TABLE 3.6

SUCCESSIVE DIFFERENCES

Two Equal Disturbances Separated by Two Points

s

D

D

D

D

i i i 21 3i 4i
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B, " it
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o s
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There are other types of perturbations that could, and
possibly should, be considered for potential identification by

successive differences. Only one of these will be examined here.

This is the situation in which the torpedo changes from a -

linear path at tr to a different linear path at tr This

+1°

situation is presented in Table 3.7 and Figure 3.7. As can be
seen by comparison of Table 3.7 with Table 3.1, it is possible
that a path change at t = r could lead to the identification

of x,. as containing a disturbance d depending on the magnitude
of Al and d. The resemblance of the signature (graph) of

D4i in the two situations could be even more striking for a

value of d such that D of Table 3.1 (corresponding to

4,2

D4 =2 of Table 3.7) were small enough to be submerged in noise
14

and Al = 3d. That a path change could conceivably cause a

threshold crossing of DZ by D

a 90° change from 6 =0 to 6' = 90° (or, vice versa) where

4r can be seen in the case of
IAll = |¥| = 90. The situation is even worse for a 90°

change from 6 = 45° to ©6' = 135° with |A.[| = 1.4(90) = 126.

1
Possible methods of identifying path changes to prevent
mis—-identification as outliers include reconsideration of
labeled outliers after fitting curves to the data and provision
from an external source such as control information. The first
method requires greater complication of the data smoothing

program involving cycling and hence negates the intent of a

simple screening program for outliers. The second requires
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Linear Case:

TABLE 3.7

Path Change at

t. =r

a, + alti + ni, ti y a, ra1 +n

it Xy Py D1 D3y Dyg

r-4 a, + (r-4)al, o
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r-2 |3y + (r-2)a; +n__, o XS "4, -2
Ty e "3,r-1
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T 0,4l R

+l a6 + (r+1)ai ~+1 B, e+l %4 r+l ke
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r+2 aé + (r+2)ai 42 Ro 1#2 "4, 142
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r+3 lag + (r+da; +n_ 4 Ry, r+3
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input information from another source and is also undesirable

but to a lesser extent. An alternative treatment is to accept
such identification of point of path change as providing an
outlier to be removed from the data. The consequences of this
treatment will be examined in a subsequent report on curve fitting
and appears, at least for the present, to be a reasonable way

of handling the situation.

There is still another kind of perturbation which can,
and has been observed to occur. This is a change in the noise
component and represented by a change in the value of the
standard deviation 0. Such changes may be a result of changes
in the environment or of the data gathering system. Evidence
of such changes in the value of ¢ should be accommodated by

corresponding changes in the threshold levels.

F. Missing Points

The occurrence of missing observations in a sequence
of observations needs some consideration. A missing observation
can be present in the data input or occur as a result of deletion
of an outlier. Note that, in the latter case, recalculation of
successive differences will be required in the vicinity of
the deleted observation.

As the simplest procedure for replacing missing points,

the currently used procedure of averaging over the adjacent

points will be used here. (This also will be re-examined when
curve-fitting is discussed.) Thus, when X is missing it
41




it will be replaced by
=i Xr+l)

and when adjacent values X, and x are missing they will

r+l
be replaced by

. 1 o

L B Mg F T B T X g miP 2R g R )
T = i - 2 (x = x ) = 1 (x + 2x )
r+l r-1 3 r+2 r-1 3 -1 r+2

The general formula for k successive missing points is

! = j+—l - 7 = -
Kogy = Fpog PEAT By T Fpg?  BE 3 ° Ueesasieel

There is a serious gquestion, however, if an analysis of
successive differences is improved by replacement of more than
two successive missing values. It would appear more reasonable,
at least on examination of the fourth order successive differ-
ences which involve only sequences of five observations, to
restart calculation of successive differences at the first
observation after a sequence of more than two missing observations.
The situation involving a missing point with linear
polynomial and noise components only is presented in Tables 4.1
and the accompanying definitions for the modified noise
components with their variances. Reduced thresholds could

be used as indicated in Table 4.2 and Figure 4.1. These reduced
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TABLE 4.1

Linear Case: Missing Point (x4) Averaged
= Pij Pai |P3i Dyj
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TABLE 4.1 Continued
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TABLE 4.2

Linear Case: Detection Thresholds for Missing Point Datum at r
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thresholds could be useful in identifying situations involving
equal disturbances separated by one observation where that
observation is labeled as an outlier and replaced by the
average of the two observations with disturbances. Recalculation
of the fourth order differences produces the disturbance
components given in the last column of Table 3.5 which are
shown with the modified thresholds in Figure 4.2. (This
situation is the same as for two disturbances separated by a
missing point.) Persistence of a threshold crossing at tr
after deletion and replacement of the observation X, can

be an indication that disturbances may be present in"

and X instead of, or in addition to, a disturbance

xr--l

in X .
r

+1

Some additional work is required here to assist in
developing that portion of the data smoothing program dealing
with successive differences. It is fairly clear that the
existence of a threshold crossing requires more effort to
determine whether it indicates an isolated outlier or a more
complicated situation. A situation with two adjacent missing
observations and no disturbances is displayed in Table 4.3
accompanied by the expressions for the noise components in
terms of the observational noise. The variances for the noise
components presented there provide the basis for the thresholds
shown in Table 4.4. The thresholds for the isolated missing

point situation are also shown in Table 4.4. Note that the
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TABLE 4.3

Linear Case: Adjacent Missing Points Averaged
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TABLE 4.3 Continued
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TABLE 4.4

THRESHOLDS FOR NOISE IN ONE AND TWO MISSING POINT SITUATIONS
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thresholds in the two missing points situation are smaller
than the corresponding ones in a situation with a single
missing point.

A situation in which a disturbance occurs in an obser-
vation adjacent to a missing point is presented in Table 4.5
(It is suspected that in situations involving one or more miss-
ing points, could also involve disturbances immediately preceding
of following a missing point due to deteriorization of physical
conditions.) The disturbance components are shown in relation-
ship to the common thresholds appropriate when there are no
missing points in Figure 4.3 and to the reduced thresholds in
Figures 4.4, 4.5 and 4.6. It can be seen that the use of the
modified thresholds can increase the potential crossing of
thresholds in the vicinity of a missing point substantially.

Examination of the effects of missing points on the
ability of successive differences to indicate the presence of
disturbances is not complete. For example, situations with
disturbances preceding and/or following adjacent missing
points have not been examined. Nevertheless, some indications
of the consideration of missing points in the use of successive
differences to screen 3-D data for outliers can be suggested
at this point in the development. Under the guiding principle
of keeping the data smoothing program as short and simple as
possible, and with the understanding that a further screening
for outliers could be included in the curve fitting portion of
the program, the following steps appear reasonable:
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TABLE 4.5

Linear Case: Disturbance Following Missing Point
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